Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.

Identifieur interne : 000D68 ( Main/Exploration ); précédent : 000D67; suivant : 000D69

A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.

Auteurs : Lina Barreto [Espagne] ; Ana Garcerá ; Kristina Jansson ; Per Sunnerhagen ; Enrique Herrero

Source :

RBID : pubmed:16936141

Descripteurs français

English descriptors

Abstract

Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine beta-lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.

DOI: 10.1128/EC.00216-06
PubMed: 16936141
PubMed Central: PMC1595348


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.</title>
<author>
<name sortKey="Barreto, Lina" sort="Barreto, Lina" uniqKey="Barreto L" first="Lina" last="Barreto">Lina Barreto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcera, Ana" sort="Garcera, Ana" uniqKey="Garcera A" first="Ana" last="Garcerá">Ana Garcerá</name>
</author>
<author>
<name sortKey="Jansson, Kristina" sort="Jansson, Kristina" uniqKey="Jansson K" first="Kristina" last="Jansson">Kristina Jansson</name>
</author>
<author>
<name sortKey="Sunnerhagen, Per" sort="Sunnerhagen, Per" uniqKey="Sunnerhagen P" first="Per" last="Sunnerhagen">Per Sunnerhagen</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16936141</idno>
<idno type="pmid">16936141</idno>
<idno type="doi">10.1128/EC.00216-06</idno>
<idno type="pmc">PMC1595348</idno>
<idno type="wicri:Area/Main/Corpus">000D20</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000D20</idno>
<idno type="wicri:Area/Main/Curation">000D20</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000D20</idno>
<idno type="wicri:Area/Main/Exploration">000D20</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.</title>
<author>
<name sortKey="Barreto, Lina" sort="Barreto, Lina" uniqKey="Barreto L" first="Lina" last="Barreto">Lina Barreto</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Catalogne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Garcera, Ana" sort="Garcera, Ana" uniqKey="Garcera A" first="Ana" last="Garcerá">Ana Garcerá</name>
</author>
<author>
<name sortKey="Jansson, Kristina" sort="Jansson, Kristina" uniqKey="Jansson K" first="Kristina" last="Jansson">Kristina Jansson</name>
</author>
<author>
<name sortKey="Sunnerhagen, Per" sort="Sunnerhagen, Per" uniqKey="Sunnerhagen P" first="Per" last="Sunnerhagen">Per Sunnerhagen</name>
</author>
<author>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
</author>
</analytic>
<series>
<title level="j">Eukaryotic cell</title>
<idno type="ISSN">1535-9778</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Amino Acids, Sulfur (biosynthesis)</term>
<term>Amino Acids, Sulfur (metabolism)</term>
<term>Cytosol (enzymology)</term>
<term>Down-Regulation (drug effects)</term>
<term>Gene Expression (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (drug effects)</term>
<term>Gene Expression Regulation, Enzymologic (genetics)</term>
<term>Gene Expression Regulation, Fungal (drug effects)</term>
<term>Gene Expression Regulation, Fungal (genetics)</term>
<term>Genes, Fungal (genetics)</term>
<term>Glucose (pharmacology)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Transferase (chemistry)</term>
<term>Glutathione Transferase (genetics)</term>
<term>Glutathione Transferase (metabolism)</term>
<term>Molecular Sequence Data (MeSH)</term>
<term>Mutant Proteins (metabolism)</term>
<term>Mutation (genetics)</term>
<term>Oleic Acid (pharmacology)</term>
<term>Oxidants (pharmacology)</term>
<term>Peroxisomes (enzymology)</term>
<term>Phenotype (MeSH)</term>
<term>RNA, Messenger (genetics)</term>
<term>RNA, Messenger (metabolism)</term>
<term>Saccharomyces cerevisiae (cytology)</term>
<term>Saccharomyces cerevisiae (drug effects)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Up-Regulation (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN messager (génétique)</term>
<term>ARN messager (métabolisme)</term>
<term>Acide oléique (pharmacologie)</term>
<term>Acides aminés soufrés (biosynthèse)</term>
<term>Acides aminés soufrés (métabolisme)</term>
<term>Alignement de séquences (MeSH)</term>
<term>Cytosol (enzymologie)</term>
<term>Données de séquences moléculaires (MeSH)</term>
<term>Expression des gènes (MeSH)</term>
<term>Glucose (pharmacologie)</term>
<term>Glutathion (métabolisme)</term>
<term>Glutathione transferase (composition chimique)</term>
<term>Glutathione transferase (génétique)</term>
<term>Glutathione transferase (métabolisme)</term>
<term>Gènes fongiques (génétique)</term>
<term>Mutation (génétique)</term>
<term>Oxydants (pharmacologie)</term>
<term>Phénotype (MeSH)</term>
<term>Protéines mutantes (métabolisme)</term>
<term>Péroxysomes (enzymologie)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (génétique)</term>
<term>Régulation de l'expression des gènes fongiques (effets des médicaments et des substances chimiques)</term>
<term>Régulation de l'expression des gènes fongiques (génétique)</term>
<term>Régulation négative (effets des médicaments et des substances chimiques)</term>
<term>Régulation positive (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (cytologie)</term>
<term>Saccharomyces cerevisiae (effets des médicaments et des substances chimiques)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Amino Acids, Sulfur</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutathione Transferase</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutathione Transferase</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Amino Acids, Sulfur</term>
<term>Glutathione</term>
<term>Glutathione Transferase</term>
<term>Mutant Proteins</term>
<term>RNA, Messenger</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Acides aminés soufrés</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutathione transferase</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Down-Regulation</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Saccharomyces cerevisiae</term>
<term>Up-Regulation</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Régulation négative</term>
<term>Régulation positive</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Cytosol</term>
<term>Péroxysomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Cytosol</term>
<term>Peroxisomes</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Genes, Fungal</term>
<term>Mutation</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN messager</term>
<term>Glutathione transferase</term>
<term>Gènes fongiques</term>
<term>Mutation</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>ARN messager</term>
<term>Acides aminés soufrés</term>
<term>Glutathion</term>
<term>Glutathione transferase</term>
<term>Protéines mutantes</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Acide oléique</term>
<term>Glucose</term>
<term>Oxydants</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Glucose</term>
<term>Oleic Acid</term>
<term>Oxidants</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Gene Expression</term>
<term>Molecular Sequence Data</term>
<term>Phenotype</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Données de séquences moléculaires</term>
<term>Expression des gènes</term>
<term>Phénotype</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine beta-lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16936141</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>12</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">1535-9778</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>5</Volume>
<Issue>10</Issue>
<PubDate>
<Year>2006</Year>
<Month>Oct</Month>
</PubDate>
</JournalIssue>
<Title>Eukaryotic cell</Title>
<ISOAbbreviation>Eukaryot Cell</ISOAbbreviation>
</Journal>
<ArticleTitle>A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>1748-59</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Saccharomyces cerevisiae cells contain three omega-class glutathione transferases with glutaredoxin activity (Gto1, Gto2, and Gto3), in addition to two glutathione transferases (Gtt1 and Gtt2) not classifiable into standard classes. Gto1 is located at the peroxisomes, where it is targeted through a PTS1-type sequence, whereas Gto2 and Gto3 are in the cytosol. Among the GTO genes, GTO2 shows the strongest induction of expression by agents such as diamide, 1-chloro-2,4-dinitrobenzene, tert-butyl hydroperoxide or cadmium, in a manner that is dependent on transcriptional factors Yap1 and/or Msn2/4. Diamide and 1-chloro-2,4-dinitrobenzene (causing depletion of reduced glutathione) also induce expression of GTO1 over basal levels. Phenotypic analyses with single and multiple mutants in the S. cerevisiae glutathione transferase genes show that, in the absence of Gto1 and the two Gtt proteins, cells display increased sensitivity to cadmium. A gto1-null mutant also shows growth defects on oleic acid-based medium, which is indicative of abnormal peroxisomal functions, and altered expression of genes related to sulfur amino acid metabolism. As a consequence, growth of the gto1 mutant is delayed in growth medium without lysine, serine, or threonine, and the mutant cells have low levels of reduced glutathione. The role of Gto1 at the S. cerevisiae peroxisomes could be related to the redox regulation of the Str3 cystathionine beta-lyase protein. This protein is also located at the peroxisomes in S. cerevisiae, where it is involved in transulfuration of cysteine into homocysteine, and requires a conserved cysteine residue for its biological activity.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Barreto</LastName>
<ForeName>Lina</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, Montserrat Roig 2, 25008 Lleida, Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Garcerá</LastName>
<ForeName>Ana</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Jansson</LastName>
<ForeName>Kristina</ForeName>
<Initials>K</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Sunnerhagen</LastName>
<ForeName>Per</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Herrero</LastName>
<ForeName>Enrique</ForeName>
<Initials>E</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2006</Year>
<Month>08</Month>
<Day>25</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Eukaryot Cell</MedlineTA>
<NlmUniqueID>101130731</NlmUniqueID>
<ISSNLinking>1535-9786</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000603">Amino Acids, Sulfur</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D050505">Mutant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D016877">Oxidants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>2UMI9U37CP</RegistryNumber>
<NameOfSubstance UI="D019301">Oleic Acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.5.1.18</RegistryNumber>
<NameOfSubstance UI="D005982">Glutathione Transferase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>IY9XDZ35W2</RegistryNumber>
<NameOfSubstance UI="D005947">Glucose</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000603" MajorTopicYN="N">Amino Acids, Sulfur</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003600" MajorTopicYN="N">Cytosol</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015536" MajorTopicYN="N">Down-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015870" MajorTopicYN="N">Gene Expression</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="N">Gene Expression Regulation, Fungal</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005800" MajorTopicYN="N">Genes, Fungal</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005947" MajorTopicYN="N">Glucose</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005982" MajorTopicYN="N">Glutathione Transferase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008969" MajorTopicYN="N">Molecular Sequence Data</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D050505" MajorTopicYN="N">Mutant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009154" MajorTopicYN="N">Mutation</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019301" MajorTopicYN="N">Oleic Acid</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016877" MajorTopicYN="N">Oxidants</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020675" MajorTopicYN="N">Peroxisomes</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010641" MajorTopicYN="N">Phenotype</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015854" MajorTopicYN="N">Up-Regulation</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>12</Month>
<Day>9</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>8</Month>
<Day>29</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16936141</ArticleId>
<ArticleId IdType="pii">EC.00216-06</ArticleId>
<ArticleId IdType="doi">10.1128/EC.00216-06</ArticleId>
<ArticleId IdType="pmc">PMC1595348</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Gen Genet. 2000 Apr;263(3):535-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10821189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:78-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399380</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:287-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399394</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Dec 11;273(50):33635-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9837948</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2003 Feb;55(2):71-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12749689</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1996 Dec 1;320 ( Pt 2):383-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8973544</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 May 15;396(1):61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16433631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 11;275(32):24798-806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10783391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 Jan 7;94(1):42-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8990158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2005 Dec;58(5):1454-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16313629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Apr 11;278(15):12826-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12562760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Cell Biol. 2001;65:37-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11381604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2001;17:701-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11687502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1994 Dec;10(13):1793-808</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7747518</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1992 Jan;130(1):51-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1732168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1996 Nov 1;241(3):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8944766</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2006;75:295-332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16756494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Res Toxicol. 1997 Jan;10(1):2-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9074797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Nov 6;273(45):29915-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9792709</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 20;277(38):35523-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12063243</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 20;275(42):32611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jul 9;99(14):9272-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12093907</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2005;45:51-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15822171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2005 May;272(10):2362-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15885087</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Jul;24(3):218-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11403571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22492-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12684511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2003 Apr;27(1):35-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12697341</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Jan 15;20(1):53-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12489126</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2002 Nov;269(22):5512-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12423349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2006 Feb;6(3):804-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16385473</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Apr 27;276(17):14279-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11278957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:365-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Lett. 2005 Jan 1;242(1):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15621414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1988 Jul;119(3):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2841185</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Jun;126(2):631-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11402193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Apr;15(6):507-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10234788</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Jul;13(9):837-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9234672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1999 Oct;15(14):1541-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10514571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Mar;179(5):1431-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9045797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Oct 15;279(42):43614-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15299026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mutat Res. 1996 Sep 23;356(2):171-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8841482</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Aug 15;358(Pt 1):257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11485575</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicol Lett. 2004 Dec 1;154(1-2):81-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15475181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Dec 10;279(50):51923-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15456753</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:379-407</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Apr 16;279(16):16246-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14742434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Apr;13(4):1109-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11950925</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2002 Sep;23(18):3205-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12298092</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2001 Nov 15;360(Pt 1):1-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11695986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1997 May 1;16(9):2441-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9171357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2003 Jun;8(6):259-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:241-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399390</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 May 10;277(19):16712-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 Mar 1;28(5):659-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10754260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microsc Res Tech. 2000 Dec 15;51(6):584-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11169860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;351:661-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Genet Dev. 2005 Dec;15(6):614-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16188435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Jun;1(3):391-400</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12455987</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3593-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824373</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 2001 Aug;22(14):2955-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11565790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histochem Cell Biol. 2004 Oct;122(4):383-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15241609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biol Direct. 2006 Mar 23;1:8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556314</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Oct;24(4):469-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Apr 28;281(17):11744-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16497670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 1999 Oct 1;459(1):33-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1998 Nov 2;17(21):6327-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9799240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1994 Nov 11;22(22):4673-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7984417</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2005;401:1-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16399376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Microb Physiol. 2004;49:1-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15518828</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2006 Sep 1;398(2):187-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16709151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1988 Dec 30;74(2):527-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3073106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2937-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10077615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Appl Microbiol. 2001;49:111-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11757348</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2002 Dec;1(6):978-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12477798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2005 Apr 15;22(5):343-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806612</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Struct Biol. 2005 Dec;15(6):716-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16263269</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Apr;9(4):713-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11983164</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Catalogne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Garcera, Ana" sort="Garcera, Ana" uniqKey="Garcera A" first="Ana" last="Garcerá">Ana Garcerá</name>
<name sortKey="Herrero, Enrique" sort="Herrero, Enrique" uniqKey="Herrero E" first="Enrique" last="Herrero">Enrique Herrero</name>
<name sortKey="Jansson, Kristina" sort="Jansson, Kristina" uniqKey="Jansson K" first="Kristina" last="Jansson">Kristina Jansson</name>
<name sortKey="Sunnerhagen, Per" sort="Sunnerhagen, Per" uniqKey="Sunnerhagen P" first="Per" last="Sunnerhagen">Per Sunnerhagen</name>
</noCountry>
<country name="Espagne">
<region name="Catalogne">
<name sortKey="Barreto, Lina" sort="Barreto, Lina" uniqKey="Barreto L" first="Lina" last="Barreto">Lina Barreto</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000D68 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000D68 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16936141
   |texte=   A peroxisomal glutathione transferase of Saccharomyces cerevisiae is functionally related to sulfur amino acid metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16936141" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020